If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2=10k+16
We move all terms to the left:
2k^2-(10k+16)=0
We get rid of parentheses
2k^2-10k-16=0
a = 2; b = -10; c = -16;
Δ = b2-4ac
Δ = -102-4·2·(-16)
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{57}}{2*2}=\frac{10-2\sqrt{57}}{4} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{57}}{2*2}=\frac{10+2\sqrt{57}}{4} $
| p/6+16=22 | | -9=7(x-7)+3x | | -1/2x-3/2=-5x | | 6j+5=77 | | 2(x-4)=x=7 | | 2x+6/4=-12 | | (3)=4x^2-8x+3 | | 7/10p=-14/9 | | 7y-5y-y=8-15 | | 8=v/2 | | 5x+14=7×-3 | | 2u-8-7=3 | | sX7+43=218 | | 4s+6=10 | | (2x+17)(2)=(4x-3)(2) | | 7(4x-9=26+6x | | 7+c/4=11 | | (x+11)(9)=(12)(x) | | 7x+3(4-3x)=5 | | 8m^2=14 | | 3m+4=36 | | (24)(x-3)=(18)(x-15) | | 3s+18-9=0 | | 8x-13=x+22 | | =8÷w2. | | 3b-13b=15+25 | | (24)(x-3)=(18)(x+15) | | (d+9.1)/(4.3)=2.1 | | 7x+x+90=360 | | 3.59x+17.95=35.9 | | 2/3x+1/4=2/5-1/3x+2/5 | | Y/2+1/2=y/5-1/2 |